

Air quality – EU Legislation and EU best practices

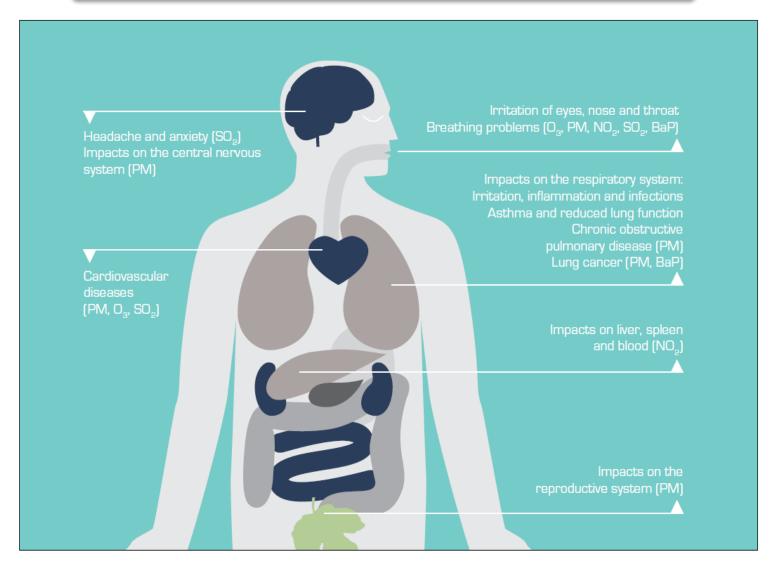
Valeria Rizza, Francesco Petracchini, Valerio Paolini, Laura Tomassetti
CNR-IIA
21 Gennaio 2020

Why is air pollution in Europe still a problem?

Europe's air quality is slowly improving, but fine particulate matter and ground-level ozone in particular continue to cause serious impacts on health.

Estimates point to well above 400.000 premature deaths in EU-28 each year due to particulate matter; more than 70.000 due to nitrogen dioxide.

3 out of 10 of the urban population citizens are exposed to particulate matter above EU standards; with 9 out of 10 exposed above WHO guidelines.



Air pollutants

Pollutant	Effects on human health
Sulphur dioxide (SO ₂)	Can cause respiratory problems, leading to chronic bronchitis, can cause narrowing of the airways and can affect asthmatics.
Carbon monoxide (CO)	Interferes with blood's capacity to absorb and circulate oxygen. Worsens emphysema, chronic bronchitis and other lung disease. Can affect those suffering from heart disease and can have impacts on the central nervous system.
Nitrogen dioxide (NO ₂)	Can cause respiratory disorders such as altered lung function, lung tissue damage, increased prevalence of acute respiratory illness. Young children and asthmatics are most at risk.
Ozone (O ₃)	Can aggravate chronic respiratory diseases and can cause permanent lung damage. Can affect the eyes, nose and throat, as well as causing chest discomfort, coughing and headaches.
Benzene (C ₆ H ₆)	Can cause cancer, anemia and injury to bone marrow.
Lead (Pb)	Can cause mental retardation, drowsiness and problems with the kidneys and reproduction system. Long term exposure interferes with normal development and functioning of the brain.
Particulate Matter (PM)	Can cause acute respiratory disorders and decrements in lung function and can lead to premature death.
Volatile organic compounds (VOCs)	Health effects are dependent upon the specific VOC, however a number of VOCs are known or suspected to cause cancer.

Health impact of air pollution

Health impact of air pollution

'able 10.1 Premature deaths attributable to PM_{2.5}, NO₂ and O₃ exposure in 41 European countries and the EU-28, 2016

		P	PM _{2.5}		NO ₂	0,	
Country	Population (1 000)	Annual mean (*)	Premature deaths (°)	Annual mean (°)	Premature deaths (b)	SOMO35 (*)	Premature deaths (°)
Austria	8 700	12.0	5 300	18.9	1 000	4 522	270
Belgium	11 311	12.7	7 600	21.7	1 600	2 203	180
Bulgaria	7 154	22.3	13 100	18.8	1 100	3 347	280
Croatia	4 191	19.4	5 300	15.2	260	4 996	190
Cyprus	1 184	13.7	580	24.0	240	5 612	30
Czechia	10 554	16.6	9 600	15.2	240	4 353	350
Denmark	5 707	9.2	2 700	10.4	80	2 293	90
Estonia	1 316	5.9	500	7.8	< 1	1 949	20
Finland	5 487	5.1	1 500	8.0	< 1	1 510	60
France	64 977	10.9	33 200	17.3	7 500	3 420	1 400
Germany	82 176	11.6	59 600	20.2	11 900	3 368	2 400
Greece	10 784	19.6	12 900	19.6	2 900	6 871	640
Hungary	9 830	17.5	12 100	16.6	770	3 952	380
Ireland	4 726	6.8	1 100	11.0	50	1 323	30
Italy	60 666	16.6	58 600	22.1	14 600	6 058	3 000
Latvia	1 969	10.9	1 700	12.0	60	2 773	60
Lithuania	2 889	11.8	2 600	11.7	20	2 456	70
Luxembourg	576	11.4	230	20.7	50	2 211	10
Malta	450	11.1	210	14.9	< 1	5 985	20
Netherlands	16 979	11.3	9 200	20.5	1 500	2 428	270
Poland	37 967	20.6	43 100	15.2	1 500	3 699	1 100
Portugal	9 809	8.3	4 900	15.3	610	4 074	320
Romania	19 761	16.8	23 400	17.6	2 600	2 485	490
Slovakia	5 426	17.6	4 800	13.5	2000	4 232	160
Slovenia	2 064	16.0	1 700	15.4	70	5 007	70
Spain	44 145	11.1	24 100	20.0	7 700	5 212	1 500
Sweden	9 851	5.7	24 100	10.7	30	1 819	120
United Kingdom	65 379	9.5	31 800	21.8	11 800	1 161	530
Albania	2 876	22.3	5 100	13.7	70	5 475	180
Andorra	73	12.1	5 100	18.2	< 1	4 423	180
Bosnia and Herzegovina	3 516	28.7	5 400	18.2	20	4 423	120
Iceland	333	4.8	5 400	10.1	< 1	4 409	120 < 5
Kosovo	1 772	27.1	3 800	14.4	20	4769	100
Liechtenstein	38	10.3	3 800	17.8	< 1	4 769	100
Monaco	38	10.3	30	17.8 26.8	10	4 945 7 186	< 5
Monaco Montenegro	622	20.3	630	26.8	< 1	7 186 5 269	< 5 20
North Macedonia	2 071	20.3 34.6	3 400	17.4	110	5 269 4 434	70
	5 211	34.6 5.9	1 300	17.4	110	4 434 1 502	70 50
Norway San Marino							
San Marino	7 076	14.3	13 700	16.3	< 1 1 500	5 667 2 509	< 5 280
Serbia	7 076	24.6	13 700	19.4	1 500	3 508	280
EU-28	506 028	12.9	374 000	46.2	68 000	3 547	14 000
EU-28	500 040	12.9	3/4 000	16.3	68 000	3 547	14 000

Figure 2.1 Trends in EU-28 emissions, 2000-2017 (% of 2000 levels): (a) SO_x, NO_x, NH₃, PM₁₀, PM_{2.5}, NMVOCs, CO, CH₄ and BC. Also shown for comparison is EU-28 gross domestic product (GDP, expressed in chain-linked volumes (2010), % of 2000 level); (b) As, Cd, Ni, Pb, Hg and BaP

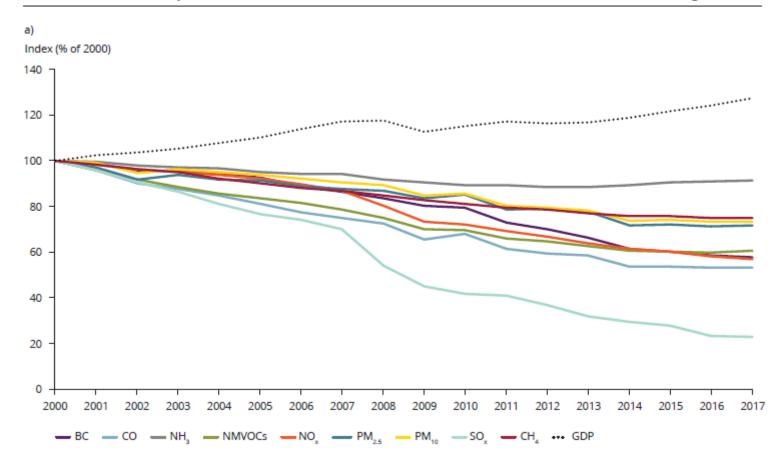
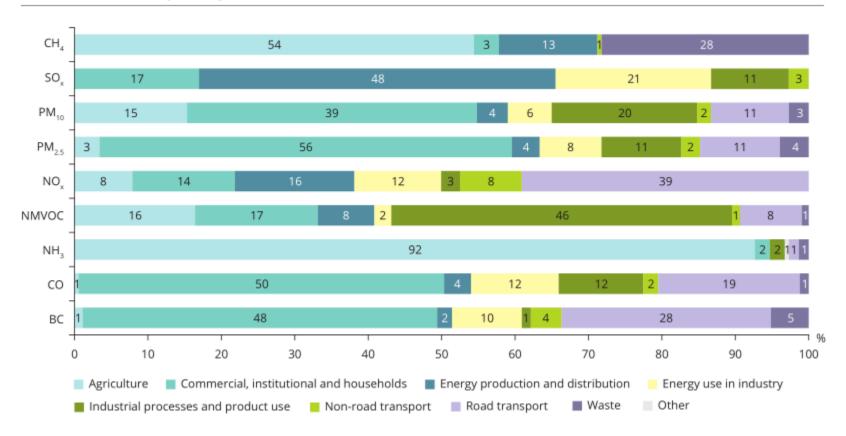



Figure 2.4 Contribution to EU-28 emissions from the main source sectors in 2017 of SO_χ, NO_χ, primary PM₁₀, primary PM_{2.5}, NH₃, NMVOCs, CO, BC and CH₄

The main European Union air policy instruments

 Ambient Air Quality Directives (AAQD): Maximum concentrations to be attained across the EU (SO2, NO2, PM10, benzene, lead, CO, O3, arsenic, cadmium, nickel, PM2.5 and BaP)

 ▶ B
 DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008
 DIRECTIVE 2004/107/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 15 December 2004

 on ambient air quality and cleaner air for Europe (OJ L 152, 11.6.2008, p. 1)
 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (OJ L 23, 26.1.2005, p. 3)

 National Emission Ceilings Directive (NECD): National emission inventories and caps to limit transboundary pollution (SOx, NOx, NMVOC, and NH3)

DIRECTIVE (EU) 2016/2284 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

of 14 December 2016

on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC

(Text with EEA relevance)

The main Member States air policy instruments

- Air Quality Plans & Programmes (AAQD)
- National Emission Inventories, Projections, and Measures, NAPCP (NECD)

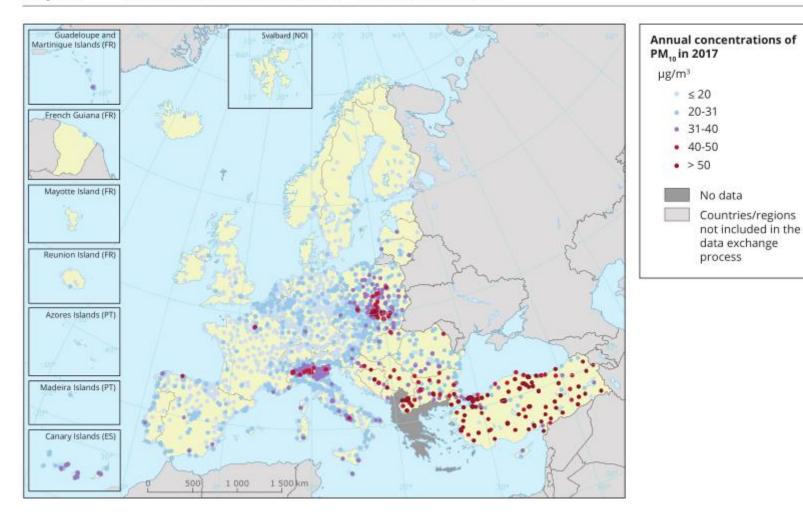
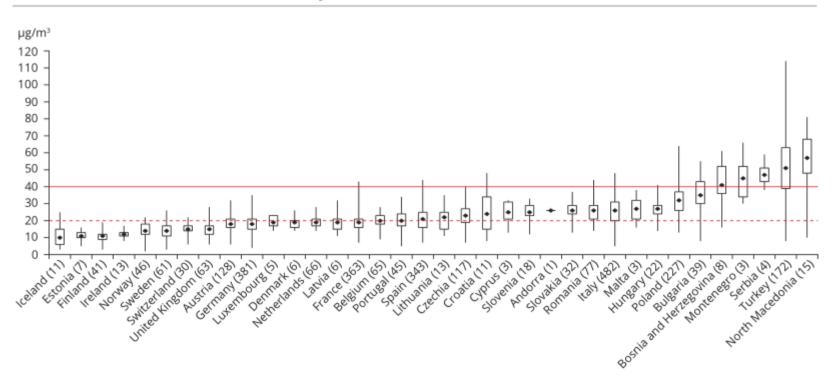
Table 1.1 Air quality standards for the protection of health, as given in the EU Ambient Air Quality Directives

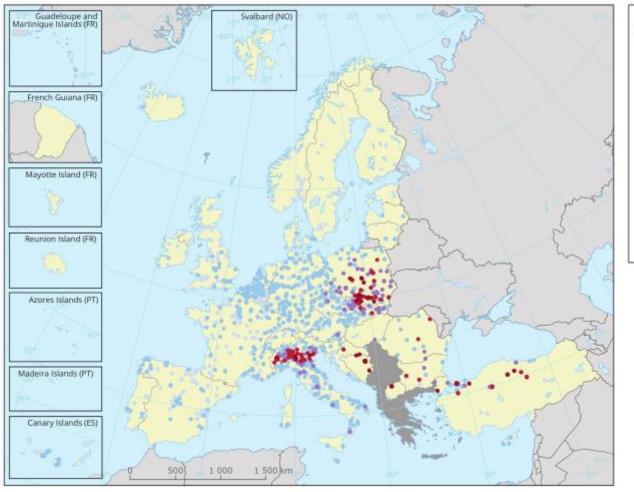
Pollutant	Averaging period	Legal nature and concentration	Comments			
PM ₁₀	1 day	Limit value: 50 µg/m³	Not to be exceeded on more than 35 days per year			
	Calendar year	Limit value: 40 µg/m³				
PM _{2.5}	Calendar year	Limit value: 25 µg/m³				
		Exposure concentration obligation: 20 µg/m³	Average exposure indicator (AEI) (°) in 2015 (2013-2015 average)			
		National exposure reduction target: 0-20 % reduction in exposure	AEI (a) in 2020, the percentage reduction depends on the initial AEI			
O ₃	Maximum daily 8-hour mean	Target value: 120 μg/m³	Not to be exceeded on more than 25 days/year, averaged over 3 years (b)			
		Long-term objective: 120 µg/m³				
	1 hour	Information threshold: 180 µg/m³				
		Alert threshold: 240 µg/m³				
NO ₂	1 hour	Limit value: 200 μg/m³	Not to be exceeded on more than 18 hours per year			
		Alert threshold: 400 µg/m³	To be measured over 3 consecutive hours over 100 km² or an entire zone			
	Calendar year	Limit value: 40 µg/m³				
BaP	Calendar year	Target value: 1 ng/m³	Measured as content in PM ₁₀			
SO ₂	1 hour	Limit value: 350 μg/m³	Not to be exceeded on more than 24 hours per year			
		Alert threshold: 500 μg/m³	To be measured over 3 consecutive hours over 100 km² or an entire zone			
	1 day	Limit value: 125 μg/m³	Not to be exceeded on more than 3 days per year			
CO	Maximum daily 8-hour mean	Limit value: 10 mg/m ³				
C ₆ H ₆	Calendar year	Limit value: 5 μg/m³				
Pb	Calendar year	Limit value: 0.5 μg/m³	Measured as content in PM ₁₀			
As	Calendar year	Target value: 6 ng/m³	Measured as content in PM ₁₀			
Cd	Calendar year	Target value: 5 ng/m³	Measured as content in PM ₁₀			
Ni	Calendar year	Target value: 20 ng/m³	Measured as content in PM ₁₀			

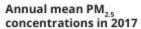
Table 1.3 World Health Organization (WHO) air quality guidelines (AQGs) and estimated reference levels (RLs) (a)

Pollutant	Averaging period	AQG	RL	Comments
PM ₁₀	1 day	50 μg/m³		99th percentile (3 days per year)
	Calendar year	20 μg/m³		
PM _{2.5}	1 day	25 μg/m³		99th percentile (3 days per year)
	Calendar year	10 μg/m³		
O ₃	Maximum daily 8-hour mean	100 μg/m³		
NO ₂	1 hour	200 μg/m³		
	Calendar year	40 μg/m³		
BaP	Calendar year		0.12 ng/m ³	
SO ₂	10 minutes	500 μg/m³		
	1 day	20 μg/m³		
СО	1 hour	30 mg/m ³		
	Maximum daily 8-hour mean	10 mg/m ³		
C ₆ H ₆	Calendar year		1.7 μg/m³	
Pb	Calendar year	0.5 µg/m³		
As	Calendar year		6.6 ng/m ³	
Cd	Calendar year	5 ng/m³ (b)		
Ni	Calendar year		25 ng/m ³	

Map 3.2 Concentrations of PM₁₀, 2017 — annual limit value

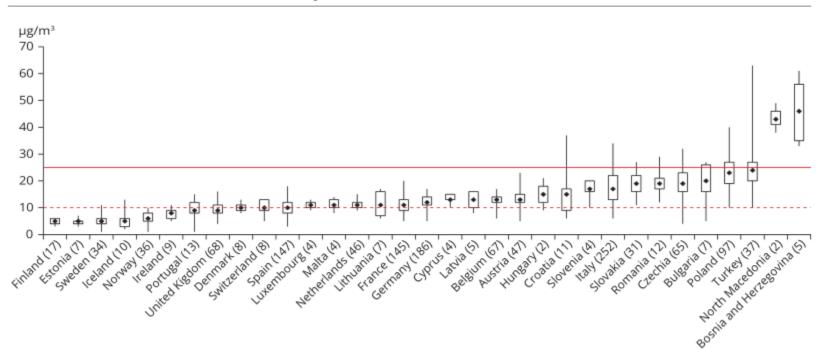




Figure 3.2 PM₁₀ concentrations in relation to the annual limit value in 2017 and number of stations considered for each country

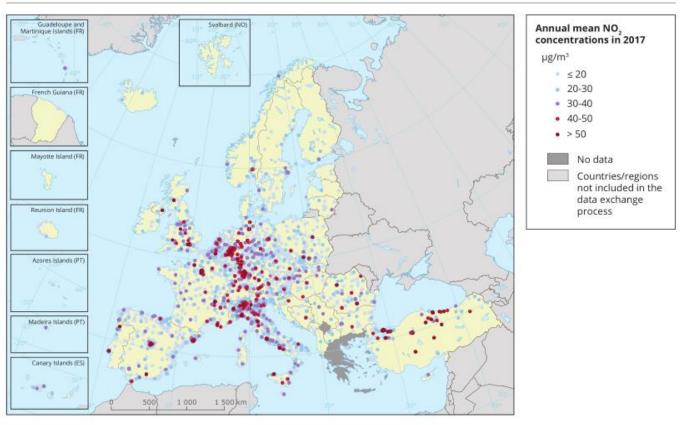


Map 3.3 Concentrations of PM_{2.5}, 2017 — annual limit value

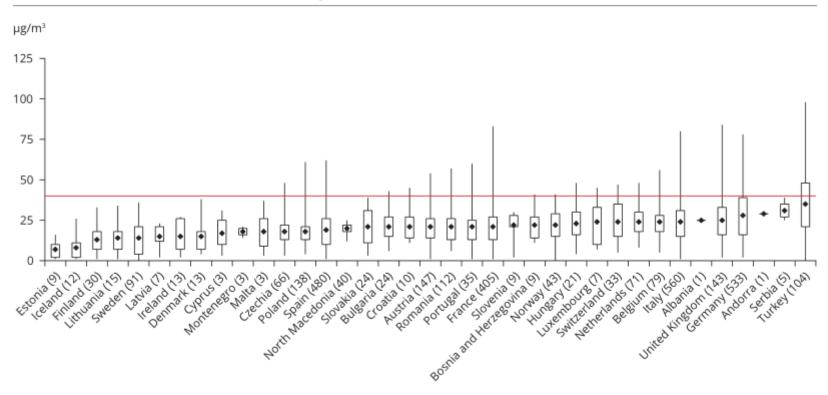
µg/m³


- . ≤10
- 10-20
- 20-25
- 25-30
- > 30
- No data

Countries/regions not included in the data exchange process


Figure 3.3 PM_{2.5} concentrations in relation to the annual limit value in 2017 and number of stations considered for each country

Map 5.1 Concentrations of NO₂, 2017


Note: Observed concentrations of NO₂ in 2017. Dots in the last two colour categories correspond to values above the EU annual limit value and the identical WHO AQG (40 µg/m³). Only stations with more than 75 % of valid data have been included in the map.

Source: EEA, 2019c.

Figure 5.1 NO₂ concentrations in relation to the annual limit value in 2017 and number of stations considered for each country

Urban population exposure

Table ES.1 Percentage of the urban population in the EU-28 exposed to air pollutant concentrations above certain EU and WHO reference concentrations (minimum and maximum observed between 2015 and 2017)

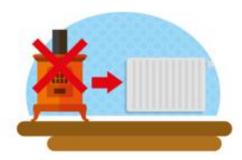
Pollutant	EU reference value (ª)	Urban population exposure (%)	WHO AQG (°)	Exposure estimate (%)
PM ₁₀	Day (50)	13-19	Year (20)	42-52
PM _{2.5}	Year (25)	6-8	Year (10)	74-81
O ₃	8-hour (120)	12-29	8-hour (100)	95-98
NO ₂	Year (40)	7-8	Year (40)	7-8
BaP	Year (1)	17-20	Year (0.12) RL	83-90
SO ₂	Day (125)	< 1	Day (20)	21-31

Key < 5 % 5-50 % 50-75 % > 75 %

Clean air for all... there are effective measures

Boosting **energy efficiency** by refurbishing buildings

City or district heating, using heat from existing industry or renewable energy sources


Examples for

Reliable, affordable and clean public transport such as electric buses and trams and new Euro VI

Implementing cleaner industrial processes

Promoting substitution of old, dirty stoves and boilers with clean models, and banning dirty fuels for household heating/cooking

Clean air for all... there are effective measures

Reliable, affordable and clean public transport such as electric buses and trams and new Euro VI

Traffic restrictions such as low-emission zones, reduced speed limits and congestion charges

Examples for NO₂

implementing cleaner industrial processes

Extensive and safe **cycling networks**, abundant bike-parking facilities with easy access to public transport

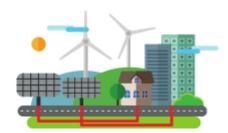
Cleaner transport such as electric cars or buses and retrofitted dirty vehicles and ships

Clean air for all... there are effective measures

Health benefits of cleaner air

Reducing **particulate matter**, **nitrogen dioxide** and **ozone** would have the biggest health benefits

Less ozone pollution is better for our **lungs and heart**


Breathing problems and **heart disease** are less common when there are fewer small particles in the air

Less **nitrogen dioxide** in the air we breathe benefits our **liver**, **spleen** and **red blood cells**

Cleaner transport reduces car exhaust fumes, which irritate the eyes, nose and throat and can cause lung cancer

Renewable energy and city or district heating significantly reduce **local air** pollution

THANKS

Valeria Rizza

Consiglio Nazionale delle Ricerche Istituto sull'Inquinamento Atmosferico Via Salaria km 29.300 Monterotondo (RM)

Table 1.2 Air quality standards, for the protection of vegetation, as given in the EU Ambient Air Quality Directive and the Convention on Long-range Transboundary Air Pollution (CLRTAP)

Pollutant	Averaging period	Legal nature and concentration	Comments	
O ₃	AOT40 (a) accumulated over May to	Target value, 18 000 μg/m³·hours	Averaged over 5 years (b)	
	July	Long-term objective, 6 000 μg/m³-hours		
	AOT40 (a) accumulated over April to September	Critical level for the protection of forests: 10 000 µg/m³-hours	Defined by the CLRTAP	
NO _x	Calendar year	Vegetation critical level: 30 μg/m³		
SO ₂	Winter	Vegetation critical level: 20 μg/m³	1 October to 31 March	
	Calendar year	Vegetation critical level: 20 µg/m ³		

